Constraints and toxicity in non-conventional fractionations

Head and Neck cancer: innovation and compliance

Pierluigi Bonomo Radioterapia Oncologica Azienda Ospedaliero – Universitaria Careggi Firenze

Disclosures

- Merck Serono
- Merck Sharp & Dhome
- Bristol-Myers Squibb
- Angelini Pharma

The ground truth: MARCH & MACH-NC meta-analyses

33 trials; 11423 patients (>2.5 Gy/fx not included)

	Overall survival
Randomised controlled trials	115
Comparisons	154
Patients	28 978
Events	19253
Gobal p value	0.074
p value for heterogeneity	0.013
p value for inconsistency	0.91
Hazard ratio (95% CI); P score (%))
Locoregional therapy	1 (ref); 21%
HFCRT	0.63 (0.51–0.77)
IC _{TaxPF} -LRT	0.69 (0.56–0.85)
ACRT	0.75 (0.66-0.85)

• Hyperfractionated RT + concomitant CT

(HFCRT): ranked as best treatment

Lacas B, Lancet Oncol 2017 Petit C, Lancet Oncol 2021

Innovation in HNC: playing with total dose, rather than fractionation!

NRG HN002 rdm phase 2 trial

- 60 Gy + C: 2-y PFS, 90.5%; 1-y mean MDADI CS, 85.3
- 60 Gy alone: 2-y PFS, 87.6%; 1-y mean MDADI CS, 81.7

Som Y, J Clin Oncol 2021

Patients	Pretrea	tment	Intratre	eatment
enrolled	FMISO	scan	FMIS	O scan
Pretreatment pathology	Pretreatment FDG PET/CT	Pretreatment ¹⁸ FMISO PET/CT	Intratreatment ¹⁸ FMISO PET/CT	

- 30 Gy + C: 2-year PFS, 92.9%
- No G3 toxicity

Riaz N, J Natl Cancer Inst 2020

30 ROC pilot trial

Widespread adoption of evidence-based hypofractionation

Ost P, J Clin Oncol 2018; Gomez DR, J Clin Oncol 2019; Palma DA, Lancet 2019; Lehrer EJ, Jama Oncol 2020; Ling DC, Int J Radiat Oncol Biol Phys 2020; Chalkidou A, Lancet Oncol 2021; Tang C, Lancet Oncol 2021

Non-conventional fractionations in HNSCC

- Are there any opportunities for clinical use?
- Are there any constraints for clinical use?
- Future perspectives

Hypofractionation in HNSCC

- Are there any opportunities for clinical use?
- Are there any constraints for clinical use?
- Future perspectives

Hypofractionation in HNSCC

- Are there any opportunities for clinical use?
- Are there any constraints for clinical use?
- Future perspectives

Are we ignoring the elephant in the room?

- HNSCC: predominantly, a disease of the elderly
 - peak incidence in the sixth decade of life¹
 - HPV epidemic: shift in the burden to \geq 65-year old patients²
- Less to gain from treatment intensification
 - decreasing benefit of altered fx and concomitant cht with increasing age³
- 70 Gy is our immutable paradigm: what about other options?
 - scarce evidence on SBRT as primary treatment⁴
 - large heterogeneity in hypofractionated regimens and patient selection^{5,6}

¹Pullte D, Oncologist 2010; ²Tota JE, J Clin Oncol 2019; ³Porceddu SV, Lancet Oncol 2017; ⁴Iqbal MS, Br J Radiol 2021; ⁵Iqbal MS, Radiother Oncol 2018; ⁶Desideri I, Oral Oncol 2021

Wishlist

- . to distinguish the frail from the vulnerable
- . to distinguish palliation from prolonged local control
- . to define standardized regimens for the unfit elderly

Porceddu SV, Lancet Oncol 2017

SBRT as a tool for de-intensification in the vulnerable?

- n=66 deemed unfit for definitive tx
- median age, 70 years; median KPS, 70
- median G8 score: 10 ("vulnerable")
- SBRT in 5 fractions
 - 35-40 Gy to GTV
 - 30 Gy to CTV
- 1-year local control: 73%
- median time to local failure: 28.3 months
- <u>></u>G3 toxicity: 3% (2/66 patients)

OAR	Constraint
PTV	D 95% = 98-100%
Larynx	Mean dose < 15 Gy
Mandible	Max dose ^a $< 20 \text{ Gy}$
Cochlea	Mean dose < 15 Gy
Retina	Mean dose < 15 Gy
Lens	Max dose ^a $< 5 \text{ Gy}$
Carotid artery	Max dose ^a < 32.5 Gy
Optic nerve/chiasm	Max dose ^a $< 25 \text{ Gy}$
Temporal tips	Mean dose < 5 Gy
Skin	D(10 cc) < 39.5 Gy
Thyroid lamina	Max dose ^a < 30 Gy

Gogineni E, Head Neck 2020

The burden of unresectable recurrence

Uncontrolled loco-regional tumor growth

- cause of death and major QoL impairment for many patients

- Salvage surgery: feasible in ≤ 1/3 of recurrent patients^{1,2}
 high rate of complications (≥25%), high rate of 2nd relapse (≈50%)
- · Re-irradiation: only other treatment with curative potential
 - lack of evidence to guide decision-making, extensive counseling mandatory³
 - Multi-Institution Reirradiation (MIRI) collaborative: largest modern series ⁴

– after re-RT, the risk of PD or death is 4 times the risk of \geq G3 late toxicity⁵

¹Goodwin WJ, Laryngoscope 2000; ²Mehanna H, J Laryngol Otol 2016; ³Foster CC, Semin Radiat Oncol 2020; ⁴Margalit DN, Int J Radiat Oncol Biol Phys 2018; ⁵Ward MC, Oral Oncol 2019

Patient selection and re-irradiation modality

- Relapse/second primary tumor in <a>>>40 Gy field
- Median time interval from 1st radiation: 2.4 years

Ward MC, Int J Radiat Oncol Biol Phys 2018 Vargo JA, Int J Radiat Oncol Biol Phys 2018

SBRT as a tool for re-irradiation of low-volume disease?

- 2-year OS, IMRT vs SBRT <a>235 Gy: 50.3% vs 38.5% p=.42
- 2-year <a>G3 late toxicity: 12.4% vs 11.6% p=.69
- Treatment-related death: 1.8% vs 0.5% p=.42

• MDACC: n=137; median SBRT dose: 45 Gy

Vargo JA , Int J Radiat Oncol Biol Phys 2018 Diao K, Head Neck 2021

Locally recurrent nasopharyngeal cancer: randomized phase 3 trial

- n= 200 (recruitment: 09/11-06/17)
- Resectable local recurrence (TNM^{6th} ed.)
 - rT1 (nasopharynx cavity)
 - rT2a (post-naris/nasal septum)
 - rT2b (superficial PPS)
 - rT3 (base wall of sphenoid sinus)
 - <u>></u> 12-month disease-free interval
- 1:1 randomized to
 - endoscopic nasopharyngectomy (ENPG) or
 - IMRT re-irradiation

(60-70 Gy in 27-35 fx, 2-2.36 Gy/fx)

- <u>></u>G3 toxicity: 13% ENPG vs 37% IMRT
- Treatment-related death: 5% ENPG vs 20% IMRT

Liu YP, Lancet Oncol 2021

Hypofractionation in HNSCC

- Are there any opportunities for clinical use?
- Are there any constraints for clinical use?
- Future perspectives

Dose tolerance of major vessels

- Carotid artery generally thought to have high tolerance to radiation
 - CTCAE <u>></u>G3 bleeding event (BE): 1.3%-4.5% range in sys. review
 - RT-induced BE confounded by bleeding due to persistent/recurrent tumor
- Factors likely associated with lower risk of BE
 - extent of carotid encasement, no surgical manipulation before/after SBRT
 - no infection/necrosis at SBRT site, >6 month interval from prior RT
- HyTEC data pooling effort: no strong conclusions are possible
 - 238 major vessel maximum point doses from 6 articles

Grimm J, Int J Radiat Oncol Biol Phys 2021

Major Vessel D_{max} in Five Fractions, Gy

- Major vessels: keep D_{max} between 20 and 30 Gy
- Carotid artery $D_{0.5cc}$ < 20 Gy

Grimm J, Int J Radiat Oncol Biol Phys 2021

Suggested constraints for 5-fraction stereotactic reRT

Table 3. Maximum cumulative BED and EQD₂values (using an α/β ratio of 3Gy). These calculations are based on 65 Gy in 30 daily fractions as a primary treatment and 35-40 Gy in 5 fractions as SBRTreirradiation.

			Primary treatment		Reirradiation			
Organ at Risk	DVH Parameter	α/β	Prescription dose (Gy)	Fractions	Constraint dose [Gy]	Fractions	Constraint BED [Gy3]	Constraint EQD2 [Gy3]
Carotid artery	Maximum dose	3	65.0	30	32.5	5	214.9	128.9
Lens	Maximum dose	3	10.0	30	5	5	17.8	10.7
Mandible	Maximum dose	3	65.0	30	20	5	158.6	95.2
Optic chiasm	Maximum dose	3	50.0	30	25	5	144.4	86.7
Optic nerves	Maximum dose	3	50.0	30	25	5	144.4	86.7
Larynx	Mean Dose	3	54.0	30	15	5	116.4	69.8
Cochlea	Mean Dose	3	45.0	30	15	5	97.5	58.5
Retina	Mean Dose	3	45.0	30	15	5	97.5	58.5
Temporal tips	Mean Dose	3	54.0	30	5	5	93.1	55.8
Skin	D10cc	3	65.0	30	39.5	5	255.5	153.3
Thyroid lamina	Maximum dose	3	65.0	30	30	5	201.9	121.2
Spinal cord								54.0
Brainstem								54.0

• Risk of <u>></u>G3 laryngeal toxicity: 11.4% if D_{5cc} of 20 Gy

Iqbal MS, Br J Radiol 2021 Ling CD, J Radiosurg SBRT 2020

Suggested constraints for IMRT reRT in NPC

Critical	Priority				Acceptance criteria (Cumulative dose of both primary and 2nd courses)*			
OAR		Agree	Disagree	tolerance	Desirable		Acceptable	
Organ	Priority	n/N (%) [†]	Alternative priority n $(\%)^{\dagger}$	dose for 1 course	Cumulative dose (EQD2)	n/N (%) [†]	Cumulative dose (EQD2)	n/N (%) [†]
Brain stem	1	19/21 (90%)	2: 1 (5%) 3: 1 (5%)	D0.03 cc 54 Gy	\leq 70.2 Gy [‡]	24/24 (100%)	81 Gy [‡]	23/24 (96%)
Spinal cord	1	20/21 (95%)	3:1 (5%)	D0.03 cc 45 Gy	\leq 58.5 Gy [‡]	24/24 (100%)	67.5 Gy [‡]	23/24 (96%)
Optic chiasma	1	23/24 (96%)	3:1 (4%)	D0.03 cc 54 Gy	\leq 70.2 Gy [‡]	18/24 (75%)	81 Gy [‡]	18/24 (75%)
Optic nerve	Unilateral: 2 Bilateral: 1	11/19 (58%) 17/19 (89%)	1: 1 (5%) 3: 7 (37%) 2: 2 (11%)	D0.03 cc 54 Gy	\leq 70.2 Gy [‡]	24/24 (100%)	Unilateral: No dose constraint if patient accepts Bilateral: 81 Gy [‡]	19/20 (95%) 19/23 (83%)
Temporal lobes	2	13/17 (76%)	3: 4 (24%)	D0.03 cc 70 Gy	\leq 91 Gy [‡]	23/23 (100%)	105 Gy [‡]	23/23 (100%)
Carotid artery	3	15/19 (79%)	4: 2 (11%) Not specified: 1 (5%) No constraint: 1 (5%)	D0.03 cc 70 Gy	≤125 Gy [§]	16/24 (67%)	No constraint	15/23 (65%)

Ng WT, Int J Radiat Oncol Biol Phys 2021

Hypofractionation in HNSCC

- Are there any opportunities for clinical use?
- Are there any constraints for clinical use?
- Future perspectives

Exploring the role of SBRT for early stage glottic cancer

- Phase I/II study in T1a-T1b glottic cancer
- n=23 (01/17-08/20)
- True vocal cord (TVC) divided in thirds:
 - 36 Gy/3 fx to third(s) containing cancer
 - 30 Gy/3 fx to immediately adjacent parts
 - PTV: CTV + 3 mm (LL-AP), 5 mm (CC)
 - Thyroid, cricoid and ipsilateral arytenoid cartilages:
 Dmax 30 Gy to 0.1 cc
- A 3-fraction SBRT schedule is feasible
- Both acute toxicity and early functional results are promising

GORTEC 2017-03 Stereo post-op phase II trial

- Open-label, single-arm phase II
- n=90 (study start: 01/18)
- pT1 or pT2 with at least one of
 - R1
 - close margin < 5 mm
 - pN0 or pN1 (no ENE)
 - PS ECOG ≤2
- Primary endpoint:
 - 2-year severe toxicity
 - (<u>></u>G3 per CTCAE v.4.03)

[Fleming's single stage model: reject a rate > 15%]

NCT03401840; primary completion date: 01/24

Radical surgery for early stage oropharynx/oral cavity with high-risk features

36 Gy in 6 fractions to the primary tumor bed over 11-13 days (≈BED₁₀ of 60 Gy in 30 fractions)

Biau J, BMC Cancer 2020

Oligometastatic HNSCC

• Both base of tongue and upper left lobe nodule histologically-confirmed HPV positive: cT2N1M1

Sun XS, Future Oncol 2018; Bonomo P, Oral Oncol 2019; Bates JE, Head Neck 2019; Pasalic D, Head Neck 2020; Szturz P, Front Oncol 2020

Debunking the "urban myth" of abscopal effect in HNSCC

- n=62 with R/M HNSCC 1:1 randomized to
 - Nivolumab monotherapy or
 - Nivolumab + SBRT (9 x 3 Gy)
- Hypothesis: SBRT to boost anti-PD-1 efficacy through abscopal effect
- Primary endpoint: ORR

- No difference in ORR: 34.5% with Nivo (95% CI: 19.9-52.7) vs 29% with Nivo + SBRT (95% CI: 16.1-46.6) p=.86
- <u>></u>G3 toxicity: 13.3% with Nivo vs 9.7% with Nivo + SBRT p=.70

McBride S, J Clin Oncol 2020 Seiwert TY, J Clin Oncol 2020

EORTC 2014 PROLoNg randomized phase III trial

Randomized 1:1

- n=200 (to be recruited in 2.5 years;
 20 sites across 4 countries)
- Inclusion criteria
 - Oligometastatic HNSCC (1-5 lesions)
 - PD-L1 CPS ≥1
 - Anti-PD 1 naive
- Stratified by
 - Metastatic disease at presentation
 - HPV status
 - PD-L1 CPS (<20 vs ≥20)</p>
- Primary endpoint:

Pembrolizumab 200 mg q3w up to 35 cycles

Pembrolizumab 200 mg q3w up to 35 cycles + SBRT on all lesions

COURTESY OF PANAGIOTIS BALERMPAS, ZURICH

Stereotactic re-irradiation + immune checkpoint inhibition

Study, institution	Year	# of patients	Median SBRT dose (Gy)	Fraction and interval	Median OS (months)	Median PFS (months)	Late G3+ toxicity (%)
Diao et al., MDACC	2021	137	45	5 fx QOD	44.3	11.8	15
Vargo et al., ¹⁷ multi-institutional	2018	414 (197 SBRT)	40	5 fx QOD	7.8		11.6
Kress et al., ³³ Georgetown	2015	85	30	5 fx daily	8.6	8.6	5.9
Vargo et al., ³⁹ Pittsburgh	2014	132	44	5 fx QOD	7		7
Lartigau et al., ³⁴ France	2013	60	36	6 fx QOD	11.8	7.1	7
Cengiz et al., ³⁵ Turkey	2011	46	30	5 fx daily	11.9	10.5	24.4
Roh et al., ³⁶ Korea	2009	36	30	3–5 fx daily	16.2		8
Siddiqui et al., ³⁷ Henry Ford	2009	21 recurrent	36	6 fx QOD	6.7		24

Safety of reRT with SBRT plus concurrent and adjuvant pembrolizumab in patients with recurrent or new second primary head and neck squamous cell cancer in a previously irradiated field: RTOG 3507 Foundation (KEYSTROKE)

Summary

- Non-conventional treatments in HNSCC: a word of caution
 - elective nodal irradiation is established standard of care
 - meaningful benefit to be meticulously assessed in controlled trials
- An optimistic outlook on the multifaceted landscape of HNSCC
 - cross-fertilization of technological advancements and clinical opportunities
 - promising role of particle therapy
- Proper patient selection & expertise remain crucial issues of care

bonomop@aou-careggi.toscana.it